منابع مشابه
Tameness from Two Successive Good Frames
We show, assuming a mild set-theoretic hypothesis, that if an abstract elementary class (AEC) has a superstable-like forking notion for models of cardinality λ and a superstable-like forking notion for models of cardinality λ+, then orbital types over models of cardinality λ+ are determined by their restrictions to submodels of cardinality λ. By a superstable-like forking notion, we mean here a...
متن کاملTameness and Extending Frames
We combine two notions in AECs, tameness and good λ-frames, and show that they together give a very well-behaved nonforking notion in all cardinalities. This helps to fill a longstanding gap in classification theory of tame AECs and increases the applicability of frames. Along the way, we prove a complete stability transfer theorem and uniqueness of limit models in these AECs.
متن کاملTameness and Frames Revisited
We study the problem of extending an abstract independence notion for types of singletons (what Shelah calls a good frame) to longer types. Working in the framework of tame abstract elementary classes, we show that good frames can always be extended to types of independent sequences. As an application, we show that tameness and a good frame imply Shelah’s notion of dimension is well-behaved, co...
متن کاملThe two-dimensional Laplace operator and tameness
We investigate the Dirichlet solution for a semianalytic continuous function on the boundary of a semianalytic bounded domain in the plane. We show that the germ of the Dirichlet solution at a boundary point with angle greater than 0 lies in a certain quasianalytic class used by Ilyashenko in his work on Hilbert’s 16 problem. With this result we can prove that the Dirichlet solution is definabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2020
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-020-1965-4